1. Publication dans des revues à comité de lecture 2024
[1] J.-G. Bauzin, N. Keruzore, N. Laraqi, and A. Gapin, ‘Experimental Identification of the Thermal Parameters of an Aircraft Braking System During the Braking Phase’, in Advances in Thermal Science and Energy, F. Ali-Toudert, A. Draoui, K. Halouani, M. Hasnaoui, A. Jemni, and L. Tadrist, Eds., in Lecture Notes in Mechanical Engineering. Cham: Springer Nature Switzerland, 2024, pp. 83–92. doi: 10.1007/978-3-031-43934-6_9.
[2] M. B. Cherikh, A. Hocine, J. G. Bauzin, A. Tmiri, and N. Laraqi, ‘Experimental Estimation of Thermomechanical Properties and Thermal Boundary Conditions’, in Advances in Thermal Science and Energy, F. Ali-Toudert, A. Draoui, K. Halouani, M. Hasnaoui, A. Jemni, and L. Tadrist, Eds., in Lecture Notes in Mechanical Engineering. Cham: Springer Nature Switzerland, 2024, pp. 186–195. doi: 10.1007/978-3-031-43934-6_20.
[3] J.-G. Bauzin and N. Laraqi, ‘New thermal analysis of the hot disc method based on explicit analytical developments’, Int. J. Therm. Sci., vol. 195, p. 108645, Jan. 2024, doi: 10.1016/j.ijthermalsci.2023.108645.
[4] M.-B. Cherikh, J.-G. Bauzin, A. Hocine, Z. A. Peter, and N. Laraqi, ‘Detection of surface moving heat source using experimental temperature measurements on the opposite surface and inverse techniques’, Int. J. Heat Mass Transf., vol. 219, p. 124840, Feb. 2024, doi: 10.1016/j.ijheatmasstransfer.2023.124840.
2. Publication dans des revues à comité de lecture (2018-2023)
[1] Q. Dupuis, V. Bissuel, N. Laraqi, J.-G. Bauzin, and M.-N. Nguyen, ‘Investigation on the structure function of an electronic packaging to verify detailed thermal model assumptions’, Heat Mass Transf., 2023, doi: 10.1007/s00231-022-03335-7.
[2] A. Baïri, A. Martín Garín, E. Martin, J. A. Millan Garcia, and A. Velazquez, ‘Experimental study on the influence of a conical cavity’s inclination angle and aspect ratio on thermal behavior of a cone cooled with nanofluid saturated porous media’, Exp. Heat Transf., vol. 36, no. 7, pp. 970–983, 2023, doi: 10.1080/08916152.2022.2084474.
[4] J.-G. Bauzin, A. Hocine, M.-B. Cherikh, M.-N. Nguyen, Z. A. Peter, and N. Laraqi, ‘Numerical estimation of local heat convection coefficient for a solid subjected to a hot spot and fluid flow’, Int. J. Therm. Sci., vol. 184, p. 107924, 2023, doi: 10.1016/j.ijthermalsci.2022.107924.
[3] T. K. Pogány and N. Laraqi, ‘On Neumann series of Macdonald functions’, Integral Transforms Spec. Funct., vol. 34, no. 7, pp. 552–561, 2023, doi: 10.1080/10652469.2022.2157414.
[5] A. Baïri, ‘Water–Copper Nanofluid Free Convective Heat Transfer Between Concentric Cones’, Heat Transf. Eng., vol. 44, no. 1, pp. 57–64, 2023, doi: 10.1080/01457632.2022.2027101.
[6] N. Alilat, F. Sastre, A. Martín-Garín, A. Velazquez, and A. Baïri, ‘Heat transfer in a conical gap using H2O–Cu nanofluid and porous media. Effects of the main physical parameters’, Case Stud. Therm. Eng., vol. 47, p. 103026, 2023, doi: 10.1016/j.csite.2023.103026.
[7] N. Laraqi, ‘Thermal constriction resistance of an axisymmetric plate subjected to a circular heat source and mixed boundary conditions. Semi-analytical solutions and simple and accurate correlations’, Int. J. Therm. Sci., vol. 181, p. 107776, 2022, doi: 10.1016/j.ijthermalsci.2022.107776.
[8] F. Sastre, A. Martin-Garin, E. Martin, A. Velazquez, and A. Baïri, ‘Experimental study on the thermal control of a roof-top collective building antenna using a porous matrix filled with Water-Copper nanofluid’, Case Stud. Therm. Eng., vol. 32, p. 101869, 2022, doi: 10.1016/j.csite.2022.101869.
[9] C. Meunier, J.-G. Bauzin, N. Laraqi, A. Gapin, and J.-F. Diebold, ‘Thermal characterization of the braking and cooling stages of an aircraft brake using identification techniques and a life-size experimental test bench’, Int. J. Heat Mass Transf., vol. 196, p. 123277, 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123277.
[10] A. Baïri, A. Martín-Garín, A. Ilinca, N. Alilat, and J. A. Millán-García, ‘Thermal state of a concentric quarter spherical enclosure subjected to air free convection’, J. Therm. Anal. Calorim., vol. 147, no. 5, pp. 3703–3708, 2022, doi: 10.1007/s10973-021-10739-w.
[11] E. B. Martin, F. Sastre, A. Velazquez, and A. Baïri, ‘3D active mixing of confined power law aqueous polymer solutions: a comparative numerical study’, Int. J. Numer. Methods Heat Fluid Flow, vol. 33, no. 3, pp. 974–997, 2022, doi: 10.1108/HFF-05-2022-0309.
[12] N. Alilat, E. B. Martin, F. Sastre, J. A. Millán García, and A. Baïri, ‘Thermal behavior of a conical antenna cooled with nanofluid saturated porous media: effects of the cavity’s inclination and aspect ratio’, Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 12, pp. 3935–3947, 2022, doi: 10.1108/HFF-03-2022-0141.
[13] A. Baïri, N. Alilat, T. Csak, K. Adeyeye, A. Martín-Garín, and J. A. Millán-García, ‘Thermal state of a conical antenna cooled by means of nanofluid saturated porous media’, Int. J. Mod. Phys. C, vol. 33, no. 01, p. 2250002, 2022, doi: 10.1142/S0129183122500024.
[14] A. Martín-Garín, J. A. Millán-García, R. J. Hernández-Minguillón, M. M. Prieto, N. Alilat, and A. Baïri, ‘Open-Source Framework Based on LoRaWAN IoT Technology for Building Monitoring and Its Integration into BIM Models’, in Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 4.0, C. M. Hussain and P. Di Sia, Eds., Cham: Springer International Publishing, 2022, pp. 257–283. doi: 10.1007/978-3-030-84205-5_9.
[22] J.-G. Bauzin, M.-B. Cherikh, and N. Laraqi, ‘Identification of thermal boundary conditions and the thermal expansion coefficient of a solid from deformation measurements’, Int. J. Therm. Sci., vol. 164, p. 106868, 2021, doi: 10.1016/j.ijthermalsci.2021.106868.
[15] E. Martin, F. Sastre, A. Velazquez, and A. Baïri, ‘Heat transfer enhancement around a finned vertical antenna by means of porous media saturated with Water-Copper nanofluid’, Case Stud. Therm. Eng., vol. 28, p. 101555, 2021, doi: 10.1016/j.csite.2021.101555.
[16] A. Baïri, A. Martín-Garín, N. Alilat, L. Roseiro, and J. A. Millán-García, ‘Quantification of free convection in a quarter-spherical innovative Trombe wall design’, J. Build. Eng., vol. 42, p. 102443, 2021, doi: 10.1016/j.jobe.2021.102443.
[23] N. Laraqi, T. Kasraoui, and J.-G. Bauzin, ‘New developments and explicit results for the thermal constriction resistance of a circular contact under mixed axisymmetric boundary conditions’, Int. J. Therm. Sci., vol. 163, p. 106806, 2021, doi: 10.1016/j.ijthermalsci.2020.106806.
[17] A. Baïri and N. Alilat, ‘Thermal design of a spherical electronic device naturally cooled by means of water–copper nanofluid saturated porous media’, J. Therm. Anal. Calorim., vol. 145, no. 6, pp. 3141–3149, 2021, doi: 10.1007/s10973-020-09851-0.
[18] A. Martín-Garín, J. A. Millán-García, J. Terés-Zubiaga, X. Oregi, I. Rodríguez-Vidal, and A. Baïri, ‘Improving Energy Performance of Historic Buildings through Hygrothermal Assessment of the Envelope’, Buildings, vol. 11, no. 9, Art. no. 9, 2021, doi: 10.3390/buildings11090410.
[19] A. Baïri and A. Martín-Garín, ‘Open parallelogrammic enclosures to improve Trombe wall performance by enhancing free convection. An experimental approach’, Exp. Heat Transf., vol. 34, no. 5, pp. 411–420, 2021, doi: 10.1080/08916152.2020.1772411.
[20] A. Baïri, N. Alilat, A. Martín-Garín, L. Roseiro, and J.-A. Millán-García, ‘Improving Building’s Thermal Performance by Means of Porous Media – An Experimental Free Convection Work’, Heat Transf. Eng., vol. 42, no. 12, pp. 1059–1066, 2021, doi: 10.1080/01457632.2020.1766252.
[21] A. Baïri, ‘Porous materials saturated with water-copper nanofluid for heat transfer improvement between vertical concentric cones’, Int. Commun. Heat Mass Transf., vol. 126, p. 105439, 2021, doi: 10.1016/j.icheatmasstransfer.2021.105439.
[24] M.-B. Cherikh, J.-G. Bauzin, and N. Laraqi, ‘Experimental estimation of transient evolution of three thermal parameters characterizing a dry friction interface’, Int. J. Heat Mass Transf., vol. 169, p. 120986, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.120986.
[25] A. Baïri, ‘Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device’, Chin. J. Phys., vol. 70, pp. 106–116, 2021, doi: 10.1016/j.cjph.2020.03.023.
[26] F. Sastre, E. B. Martin, A. Velazquez, and A. Baïri, ‘Comparison of three-dimensional flow mixing via pulsation and dynamical stirring: application to the mixing of parallel streams at different temperatures’, Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 6, pp. 1883–1910, 2021, doi: 10.1108/HFF-06-2021-0373.
[27] A. Baïri, J. Delery, and B. Chanetz, ‘Guest editorial’, Int. J. Numer. Methods Heat Fluid Flow, vol. 31, no. 2, pp. 597–598, 2021, doi: 10.1108/HFF-12-2020-0768.
[28] A. Baïri and A. Velazquez, ‘Natural convection with water-copper nanofluid around a finned vertical cylindrical electronic component’, Int. J. Numer. Methods Heat Fluid Flow, vol. 32, no. 3, pp. 931–943, 2021, doi: 10.1108/HFF-03-2021-0158.
[29] A. Baïri, N. Alilat, A. Martín-Garín, K. Adeyeye, J.-A. Millán-García, and L. Roseiro, ‘Free Convective Heat Transfer in a Closed Gap between Concentric Semi-Hemispheres’, Energies, vol. 14, no. 22, Art. no. 22, 2021, doi: 10.3390/en14227479.
[30] A. Baïri, N. Alilat, and F. Déniz Quintana, ‘Experimental study of free convective heat transfer around a spherical electronic component cooled by means of porous media saturated by nanofluid’, Heat Mass Transf., vol. 56, no. 11, pp. 3085–3092, Nov. 2020, doi: 10.1007/s00231-020-02908-8.
[31] A. Baïri, ‘New correlations for free convection with water-ZnO nanofluid saturated porous medium around a cubical electronic component in hemispherical cavity’, Heat Transf. Eng., vol. 41, no. 14, pp. 1275–1287, Aug. 2020, doi: 10.1080/01457632.2019.1637142.
[32] A. Baïri, A. Martín-Garín, and J. A. Millán-García, ‘Porous media to intensify natural convection in rectangular enclosures used in building techniques’, Int. J. Mod. Phys. C, vol. 31, no. 04, p. 2050061, 2020, doi: 10.1142/S0129183120500618.
[33] A. Baïri, A. Martín-Garín, K. Adeyeye, K. She, and J. A. Millán-García, ‘Enhancement of natural convection for improvement of Trombe wall performance. An experimental study’, Energy Build., vol. 211, p. 109788, 2020, doi: 10.1016/j.enbuild.2020.109788.
[34] N. Alilat, O. Haddad, and A. Baïri, ‘Numerical study of natural convection of ZnO-water nanofluid enclosed between two inclined and concentric hemispheres’, Eur. Phys. J. Plus, vol. 135, no. 2, p. 146, 2020, doi: 10.1140/epjp/s13360-020-00205-1.
[35] A. Martín-Garín, J. A. Millán-García, A. Baïri, M. Gabilondo, and A. Rodríguez, ‘10 – IoT and cloud computing for building energy efficiency’, in Start-Up Creation (Second Edition), F. Pacheco-Torgal, E. Rasmussen, C.-G. Granqvist, V. Ivanov, A. Kaklauskas, and S. Makonin, Eds., in Woodhead Publishing Series in Civil and Structural Engineering. , Woodhead Publishing, 2020, pp. 235–265. doi: 10.1016/B978-0-12-819946-6.00010-2.
[36] A. Martín-Garín, J. A. Millán-García, J. M. Hidalgo-Betanzos, R. J. Hernández-Minguillón, and A. Baïri, ‘Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests’, Energies, vol. 13, no. 24, Art. no. 24, 2020, doi: 10.3390/en13246727.
[37] N. Laraqi, H. Ramassamy, O. Rajaoarisoa, T. Wauthier, and J.-G. Bauzin, ‘New exact analytical solutions for the transient surface temperature of solids subjected to a non-uniform axisymmetric circular heat source’, Int. J. Therm. Sci., vol. 145, p. 106034, 2019, doi: 10.1016/j.ijthermalsci.2019.106034.
[38] A. Baïri and N. Laraqi, ‘Experimental quantification of natural convective heat transfer within annulus space filled with a H2O-Cu nanofluid saturated porous medium. Application to electronics cooling’, Exp. Heat Transf., vol. 32, no. 4, pp. 364–375, 2019, doi: 10.1080/08916152.2018.1526230.
[39] A. Purusothaman, A. Baïri, and K. Murugesan, ‘Thermal state of electronic assemblies equipped with an array of heaters and coolers (HACs) subjected to natural convection’, Therm. Sci. Eng. Prog., vol. 11, pp. 317–324, 2019, doi: 10.1016/j.tsep.2019.04.008.
[40] J.-G. Bauzin, M.-N. Nguyen, N. Laraqi, A. Vaca Hernández, and A. Dehmani, ‘Thermoelastic mechanical and heat conduction study through inverse method and transfer functions’, Int. J. Heat Mass Transf., vol. 135, pp. 1260–1268, Jun. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.02.049.
[41] J.-G. Bauzin and N. Laraqi, ‘Three-dimensional analytical calculation of the temperature in a brake disc of a high-speed train’, Appl. Therm. Eng., vol. 154, pp. 668–675, 2019, doi: 10.1016/j.applthermaleng.2019.03.112.
[43] A. Baïri, ‘Experimental study on enhancement of free convective heat transfer in a tilted hemispherical enclosure by using Water-ZnO nanofluid saturated porous materials’, Appl. Therm. Eng., vol. 148, pp. 992–998, 2019, doi: 10.1016/j.applthermaleng.2018.11.115.
[44] A. Baïri, ‘Experimental study on enhancement of free convective heat transfer in a tilted hemispherical enclosure by using Water-ZnO nanofluid saturated porous materials’, Appl. Therm. Eng., vol. 148, pp. 992–998, 2019, doi: 10.1016/j.applthermaleng.2018.11.115.
[42] J.-G. Bauzin, M.-N. Nguyen, N. Laraqi, and M.-B. Cherikh, ‘Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods’, Int. J. Therm. Sci., vol. 137, pp. 431–437, 2019, doi: 10.1016/j.ijthermalsci.2018.12.004.
[45] A. Baïri, N. Suresh, P. Gayathri, N. Nithyadevi, and P. Abimanyu, ‘Quantification of free convection within a hemispherical annulus through a porous medium saturated by water-copper nanofluid’, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 3, pp. 1153–1166, 2019, doi: 10.1108/HFF-09-2018-0467.
[46] A. Baïri, J.-G. Bauzin, A. Martín-Garín, N. Alilat, and J. A. Millán-García, ‘Natural convective cooling of electronics contained in tilted hemispherical enclosure filled with a porous medium saturated by water-copper nanofluid’, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 1, pp. 280–293, 2018, doi: 10.1108/HFF-01-2018-0036.
[47] A. Baïri and N. Laraqi, ‘Natural convective heat transfer in a hemispherical cavity filled with ZnO–H2O nanofluid saturated porous medium’, Int. J. Mod. Phys. C, vol. 29, no. 10, p. 1850097, 2018, doi: 10.1142/S0129183118500973.
[48] B. Rogié et al., ‘Multi-port dynamic compact thermal models of dual-chip package using model order reduction and metaheuristic optimization’, Microelectron. Reliab., vol. 87, pp. 222–231, 2018, doi: 10.1016/j.microrel.2018.06.009.
[49] J.-G. Bauzin, N. Keruzore, N. Laraqi, A. Gapin, and J.-F. Diebold, ‘Identification of the heat flux generated by friction in an aircraft braking system’, Int. J. Therm. Sci., vol. 130, pp. 449–456, 2018, doi: 10.1016/j.ijthermalsci.2018.05.008.
[50] B. Rogié, E. Monier-Vinard, M.-N. Nguyen, V. Bissuel, and N. Laraqi, ‘Practical analytical modeling of 3D multi-layer Printed Wired Board with buried volumetric heating sources’, Int. J. Therm. Sci., vol. 129, pp. 404–415, 2018, doi: 10.1016/j.ijthermalsci.2018.03.016.
[51] A. Baïri, ‘Effects of ZnO-H2O nanofluid saturated porous medium on the thermal behavior of cubical electronics contained in a tilted hemispherical cavity. An experimental and numerical study’, Appl. Therm. Eng., vol. 138, pp. 924–933, 2018, doi: 10.1016/j.applthermaleng.2018.04.080.
[52] A. Baïri and N. Laraqi, ‘Thermal performance of nanofluid saturated porous medium on cooling electronics contained in an inclined hemispherical enclosure’, Int. J. Mod. Phys. C, vol. 29, no. 06, p. 1850039, 2018, doi: 10.1142/S0129183118500390.
[53] A. Baïri, N. Laraqi, and K. Adeyeye, ‘Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection’, Eur. Phys. J. Plus, vol. 133, no. 3, p. 93, 2018, doi: 10.1140/epjp/i2018-11914-3.
[54] A. Martín-Garín, J. A. Millán-García, A. Baïri, J. Millán-Medel, and J. M. Sala-Lizarraga, ‘Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit’, Autom. Constr., vol. 87, pp. 201–214, 2018, doi: 10.1016/j.autcon.2017.12.017.
[55] A. Baïri, O. Haddad, J.-P. Guinart, K. Adeyeye, and N. Alilat, ‘Effects of the Encapsulating Resin on the Junction Temperature of the QFN16 and QFN32 Electronic Packages Subjected to Free Convection’, Heat Transf. Eng., vol. 39, no. 4, pp. 353–358, 2018, doi: 10.1080/01457632.2017.1305834.
[56] A. Baïri, ‘Natural convection between concentric and inclined hemispherical cavities filled with Cu-water nanofluid’, J. Mol. Liq., vol. 249, no. Supplement C, pp. 1263–1270, 2018, doi: 10.1016/j.molliq.2017.11.079.
[57] K. Adeyeye, A. Bairi, S. Emmitt, and K. Hyde, ‘Socially-integrated resilience in building-level water networks using smart microgrid+net’, Procedia Eng., vol. 212, pp. 39–46, 2018, doi: 10.1016/j.proeng.2018.01.006.
3. Publication dans des revues à comité de lecture (avant 2018)
[1] N. Laraqi, ‘An Exact Explicit Analytical Solution of the Steady-State Temperature in a Half Space Subjected to a Moving Circular Heat Source’, J. Tribol., vol. 125, no. 4, pp. 859–862, Sep. 2003, doi: 10.1115/1.1573233.
[2] J.-G. Bauzin and N. Laraqi, ‘Simultaneous Estimation of Frictional Heat Flux and Two Thermal Contact Parameters for Sliding Contacts’, Numer. Heat Transf. Part Appl., vol. 45, no. 4, pp. 313–328, Mar. 2004, doi: 10.1080/10407780490250355.
[3] A. Baïri, N. Alilat, J.-G. Bauzin, and N. Laraqi, ‘Three-dimensional stationary thermal behavior of a bearing ball’, Int. J. Therm. Sci., vol. 43, no. 6, pp. 561–568, Jun. 2004, doi: 10.1016/j.ijthermalsci.2003.10.008.
[4] N. Alilat, A. Baïri, and N. Laraqi, ‘Three-Dimensional Calculation of Temperature in a Rotating Disk Subjected to an Eccentric Circular Heat Source and Surface Cooling’, Numer. Heat Transf. Part Appl., vol. 46, no. 2, pp. 167–180, Jul. 2004, doi: 10.1080/10407780490463485.
[5] N. Laraqi, A. Baı̈ri, and L. Ségui, ‘Temperature and thermal resistance in frictional devices’, Appl. Therm. Eng., vol. 24, no. 17–18, pp. 2567–2581, Dec. 2004, doi: 10.1016/j.applthermaleng.2004.04.003.
[6] J.-G. Bauzin, N. Laraqi, and A. Baïri, ‘Estimation of thermal contact parameters at the interface of two sliding bodies’, J. Phys. Conf. Ser., vol. 135, p. 012015, Nov. 2008, doi: 10.1088/1742-6596/135/1/012015.
[7] N. Laraqi, N. Alilat, J. M. G. de García de María, and A. Baïri, ‘Temperature and division of heat in a pin-on-disc frictional device—Exact analytical solution’, Wear, vol. 266, no. 7–8, pp. 765–770, Mar. 2009, doi: 10.1016/j.wear.2008.08.016.
[8] N. Laraqi, ‘Thermal impedance and transient temperature due to a spot of heat on a half-space’, Int. J. Therm. Sci., vol. 49, no. 3, pp. 529–533, Mar. 2010, doi: 10.1016/j.ijthermalsci.2009.10.004.
[9] J. M. García de María and N. Laraqi, ‘Steady state temperature of a two-layer body subjected to a moving heat source and convective cooling’, Int. J. Therm. Sci., vol. 49, no. 5, pp. 756–761, May 2010, doi: 10.1016/j.ijthermalsci.2009.10.009.
[10] A. Baïri et al., ‘Nusselt-Rayleigh correlations for free convection in 2D air-filled parallelogrammic enclosures with isothermal active walls’, Heat Mass Transf., vol. 47, no. 5, pp. 589–595, May 2011, doi: 10.1007/s00231-010-0750-z.
[11] ‘Calculation and analysis of thermal impedance of microelectronic structures from analytical models – ScienceDirect’. Accessed: May 08, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0038110111002978
[12] S. Guenoun, A. Baïri, N. Laraqi, J.-G. Bauzin, and A. Hocine, ‘Convection Correlations at High Re Numbers for Cavities of Cylindrical Roller Bearings’, Fluid Dyn. Mater. Process., vol. 8, no. 2, pp. 197–214, 2012.
[13] A. Merabtine, S. Mokraoui, R. Benelmir, and N. Laraqi, ‘Modélisation par la méthode Bond Graph d’un système combiné plancher chauffant–plafond rafraîchissant’, Mech. Ind., vol. 13, no. 1, pp. 77–86, 2012, doi: 10.1051/meca/2011152.
[14] S. Mokraoui, A. Merabtine, R. Benelmir, and N. Laraqi, ‘Bond Graph approach for modeling and analysis of transient heat conduction in the prospect of energy building application’, Int. J. Energy Environ. Econ., vol. 20, no. 1, p. 53, 2012.
[15] N. Dihmani, S. Amraqui, A. Mezrhab, and N. Laraqi, ‘Numerical Modelling of Rib Width and Surface Radiation Effect on Natural Convection in a Vertical Vented and Divided Channel’, ResearchGate, vol. 8, no. 3, pp. 311–322, Jan. 2012, doi: 10.3970/fdmp.2012.008.311.
[16] N. Laraqi and M. El Ganaoui, ‘Analytical computation of transient heat transfer and macro-constriction resistance applied to thermal spraying processes’, Comptes Rendus Mécanique, vol. 340, no. 7, pp. 536–542, Jul. 2012, doi: 10.1016/j.crme.2012.03.007.
[17] M. Hamraoui, M. Chbiki, N. Laraqi, and L. Roseiro, ‘Analytical study of the temperature distribution in solids subjected to nonuniform moving heat sources’, Therm. Sci., vol. 17, no. 3, pp. 687–694, 2013, doi: 10.2298/TSCI120826071H.
[18] N. Laraqi and E. Monier-Vinard, ‘New analytical solution for solving steady-state heat conduction problems with singularities’, Therm. Sci., vol. 17, no. 3, pp. 665–672, 2013, doi: 10.2298/TSCI120826070L.
[19] E. Monier-Vinard, N. Laraqi, C. Dia, M. Nguyen, and V. Bissuel, ‘Analytical thermal modelling of multilayered active embedded chips into high density electronic board’, Therm. Sci., vol. 17, no. 3, pp. 695–706, 2013, doi: 10.2298/TSCI120826072M.
[20] L. Roseiro, C. Alcobia, P. Ferreira, A. Baïri, N. Laraqi, and N. Alilat, ‘Identification of the Forces in the Suspension System of a Race Car Using Artificial Neural Networks’, in Computational Intelligence and Decision Making, vol. 61, A. Madureira, C. Reis, and V. Marques, Eds., Dordrecht: Springer Netherlands, 2013, pp. 469–477. Accessed: Jan. 12, 2017. [Online]. Available: http://www.springerlink.com/index/10.1007/978-94-007-4722-7_44
[21] F. Moufekkir, M. A. Moussaoui, A. Mezrhab, M. Bouzidi, and N. Laraqi, ‘Study of double-diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method’, Int. J. Therm. Sci., vol. 63, pp. 65–86, Jan. 2013, doi: 10.1016/j.ijthermalsci.2012.07.015.
[22] A. Baïri and J. M. García de María, ‘Nu–Ra–Fo correlations for transient free convection in 2D convective diode cavities with discrete heat sources’, Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 623–628, Feb. 2013, doi: 10.1016/j.ijheatmasstransfer.2012.10.050.
[23] A. Baïri, ‘Correlations for transient natural convection in parallelogrammic enclosures with isothermal hot wall’, Appl. Therm. Eng., vol. 51, no. 1–2, pp. 833–838, Mar. 2013, doi: 10.1016/j.applthermaleng.2012.09.043.
[24] N. Dihmani, S. Amraqui, A. Mezrhab, M. Bouzidi, and N. Laraqi, ‘MODELING OF NATURAL CONVECTION WITH SURFACE RADIATION IN VENTED VERTICAL CHANNEL WITH RECTANGULAR RIB’, Int. J. Comput. Methods, vol. 10, no. 03, p. 1350001, Jun. 2013, doi: 10.1142/S0219876213500011.
[25] A. Baïri and J. M. García de María, ‘Numerical and experimental study of steady state free convection generated by constant heat flux in tilted hemispherical cavities’, Int. J. Heat Mass Transf., vol. 66, pp. 355–365, Nov. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.07.038.
[26] A. Baïri, E. Monier-Vinard, N. Laraqi, I. Baïri, M.-N. Nguyen, and C.-T. Dia, ‘Natural convection in inclined hemispherical cavities with isothermal disk and dome faced downwards. Experimental and numerical study’, Appl. Therm. Eng., vol. 73, no. 1, pp. 1340–1347, 2014.
[27] A. Baïri, E. Zarco-Pernia, and J.-M. G. De Maria, ‘A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity’, Appl. Therm. Eng., vol. 63, no. 1, pp. 304–322, 2014.
[28] E. Monier-Vinard, N. Laraqi, C. Dia, M.-N. Nguyen, and V. Bissuel, ‘Analytical modeling of multi-layered printed circuit board using multi-stacked via clusters as component heat spreader’, Therm. Sci., no. 00, pp. 143–143, 2014, doi: 10.2298/TSCI140403143M.
[29] A. Baïri, ‘Nu–Ra–Fo correlations for thermal control of embarked radars contained in tilted hemispherical cavities and subjected to constant heat flux’, Appl. Therm. Eng., vol. 67, no. 1–2, pp. 540–544, Jun. 2014, doi: 10.1016/j.applthermaleng.2014.03.022.
[30] A. Baïri and H. F. Öztop, ‘On thermal control of devices contained in inclined hemispherical cavities with dome oriented downwards and subjected to transient natural convection’, Int. Commun. Heat Mass Transf., vol. 55, pp. 109–112, Jul. 2014, doi: 10.1016/j.icheatmasstransfer.2014.04.001.
[31] A. Baïri, ‘Empirical Nu–Ra–Fo relationships for natural convection in air-filled hemispherical enclosures. Isothermal and inclined disk with dome oriented downwards’, Int. Commun. Heat Mass Transf., vol. 57, pp. 347–352, Oct. 2014, doi: 10.1016/j.icheatmasstransfer.2014.08.016.
[32] A. Baïri, ‘Quantification of natural convective heat transfer within air-filled hemispherical cavities. Isothermal tilted disk with dome oriented upwards and wide Ra range’, Int. Commun. Heat Mass Transf., vol. 57, pp. 291–296, Oct. 2014, doi: 10.1016/j.icheatmasstransfer.2014.07.009.
[33] A. Baïri and H. F. Öztop, ‘Free convection in inclined hemispherical cavities with dome faced downwards. Nu–Ra relationships for disk submitted to constant heat flux’, Int. J. Heat Mass Transf., vol. 78, pp. 481–487, Nov. 2014, doi: 10.1016/j.ijheatmasstransfer.2014.06.089.
[34] A. Baïri, ‘A synthesis of correlations on quantification of free convective heat transfer in inclined air-filled hemispherical enclosures’, Int. Commun. Heat Mass Transf., vol. 59, pp. 174–177, Dec. 2014, doi: 10.1016/j.icheatmasstransfer.2014.10.013.
[35] M. Chbiki, da Botelho, J.-G. Bauzin, N. Laraqi, and J. F. Jarno, ‘Thermal effect on the thermomechanical behavior of contacts in a Traveling Wave Tube (TWT)’, Therm. Sci., no. 00, pp. 10–10, 2015, doi: 10.2298/TSCI141216010C.
[36] E. Monier-Vinard, N. Laraqi, C.-T. Dia, M.-N. Nguyen, and V. Bissuel, ‘Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization’, Solid-State Electron., vol. 103, pp. 30–39, Jan. 2015, doi: 10.1016/j.sse.2014.09.004.
[37] A. Baïri, ‘Transient free convection within air-filled hemispherical enclosures. Nu-Ra-Fo relationships for isothermal and inclined disk with dome oriented upwards’, Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 3, pp. 629–638, Apr. 2015, doi: 10.1108/HFF-04-2014-0112.
[38] A. Baïri, J. M. G. de María, N. Alilat, N. Laraqi, and J.-G. Bauzin, ‘Nu-Ra correlations for natural convection at high Ra numbers in air-filled tilted hemispherical cavities with dome oriented upwards. Disk submitted to constant heat flux’, Int. J. Numer. Methods Heat Fluid Flow, vol. 25, no. 3, pp. 504–512, Apr. 2015, doi: 10.1108/HFF-12-2013-0335.
[39] A. Baïri, ‘Natural convection on inclined QFN32 electronic package generating constant volumetric heat flux’, Int. Commun. Heat Mass Transf., vol. 66, pp. 133–139, Aug. 2015, doi: 10.1016/j.icheatmasstransfer.2015.05.016.
[40] A. Baïri, ‘Thermal design of tilted electronic assembly with active QFN16 package subjected to natural convection’, Int. Commun. Heat Mass Transf., vol. 66, pp. 240–245, Aug. 2015, doi: 10.1016/j.icheatmasstransfer.2015.06.008.
[41] A. Baïri, ‘Effects of the wire-bonding technique on the QFN16b’s thermal performance. New correlations for the free convective heat transfer coefficient’, Int. Commun. Heat Mass Transf., vol. 69, pp. 59–65, Dec. 2015, doi: 10.1016/j.icheatmasstransfer.2015.10.004.
[42] N. Laraqi, E. Chahour, E. Monier-Vinard, N. Fahdi, C. Zerbini, and M.-N. Nguyen, ‘Simple and accurate correlations for some problems of heat conduction with nonhomogeneous boundary conditions’, Therm. Sci., no. 00, pp. 243–243, 2016, doi: 10.2298/TSCI160411243L.
[43] A. Baïri, ‘Correlations highlighting effects of the PCB’s Copper ratio on the free convective heat transfer for a tilted QFN32 electronic package’, Int. J. Heat Mass Transf., vol. 92, pp. 110–119, Jan. 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.064.
[44] A. Baïri, C. Crua, J.-G. Bauzin, and I. Baïri, ‘Aerodynamical phenomena in a large top covered wind mill with vertical axis wind turbine’, Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 365–378, Jan. 2016, doi: 10.1108/HFF-11-2014-0350.
[45] A. Baïri, ‘Quantification of the natural convective heat transfer for the tilted and wire-bonded QFN32b-PCB electronic assembly’, Int. Commun. Heat Mass Transf., vol. 72, pp. 84–89, Mar. 2016, doi: 10.1016/j.icheatmasstransfer.2016.01.011.
[46] M. M. Rashidi, M. Nasiri, M. Khezerloo, and N. Laraqi, ‘Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls’, J. Magn. Magn. Mater., vol. 401, pp. 159–168, Mar. 2016, doi: 10.1016/j.jmmm.2015.10.034.
[47] A. Baïri and O. Haddad, ‘Detailed correlations on natural convective heat transfer coefficients for a QFN32 electronic device on inclined PCB’, Numer. Heat Transf. Part Appl., vol. 69, no. 8, pp. 841–849, Apr. 2016, doi: 10.1080/10407782.2015.1090850.
[48] E. Monier-Vinard, M.-N. Nguyen, N. Laraqi, V. Bissuel, and O. Daniel, ‘Steady-state temperature solution for early design of Annealed Pyrolytic Graphite heat spreader: Full results’, IEEE, May 2016, pp. 945–953. doi: 10.1109/ITHERM.2016.7517647.
[49] A. Baïri, ‘Temperature determination of tilted electronic assemblies equipped with basic and wire-bonded QFN16 and 32 devices subjected to free convection’, Appl. Therm. Eng., vol. 102, pp. 565–569, Jun. 2016, doi: 10.1016/j.applthermaleng.2016.03.044.
[50] Abderrahmane Baïri, ‘Free convective overall heat transfer coefficient on inclined electronic assembly with active QFN16 package’, Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 5, pp. 1446–1459, Jun. 2016, doi: 10.1108/HFF-04-2015-0142.
[51] E. Monier-Vinard et al., ‘Experimental characterization of the predictive thermal behaviour model of a surface-mounted soft magnetic composite inductor’, Microelectron. Reliab., Oct. 2016, doi: 10.1016/j.microrel.2016.09.020.
[52] A. Baïri, ‘Free convective heat transfer for the wire-bonded and low powered QFN64b electronic device’, Int. Commun. Heat Mass Transf., vol. 77, no. Supplement C, pp. 94–99, Oct. 2016, doi: 10.1016/j.icheatmasstransfer.2016.07.003.
[53] A. Baïri et al., ‘Aerodynamics in the open channel of the Sistan-type wind-mill with vertical axis wind turbine’, Int. J. Numer. Methods Heat Fluid Flow, Oct. 2016, doi: 10.1108/HFF-06-2015-0226.
[54] A. Purusothaman, A. Baïri, and N. Nithyadevi, ‘3D natural convection on a horizontal and vertical thermally active plate in a closed cubical cavity’, Int. J. Numer. Methods Heat Fluid Flow, Oct. 2016, doi: 10.1108/HFF-08-2015-0341.
[55] A. Baïri, J.-G. Bauzin, and N. Alilat, ‘Experimental and Numerical Study of Natural Convection for High Powered and Wire-Bonded QFN64b Electronic Device’, Int. Commun. Heat Mass Transf., vol. 78, pp. 264–270, Nov. 2016, doi: 10.1016/j.icheatmasstransfer.2016.09.016.
[56] M.-N. Nguyen, E. Monier-Vinard, N. Laraqi, and V. Bissuel, ‘Effect of heat source orientation on the thermal behavior of N-layer electronic board’, Int. J. Therm. Sci., vol. 109, pp. 23–32, Nov. 2016, doi: 10.1016/j.ijthermalsci.2016.05.026.
[57] A. Baïri, ‘Free convective heat transfer coefficient for high powered and tilted QFN64 electronic device’, Microelectron. Reliab., vol. 66, no. Supplement C, pp. 85–91, Nov. 2016, doi: 10.1016/j.microrel.2016.09.009.
[58] A. Baïri, ‘Junction temperature of QFN32 and 64 electronic devices subjected to free convection. Effects of the resin’s thermal conductivity’, Microelectron. Reliab., vol. 74, no. Supplement C, pp. 67–73, Jul. 2017, doi: 10.1016/j.microrel.2017.05.006.
[59] O. Haddad, A. Baïri, N. Alilat, J. G. Bauzin, and N. Laraqi, ‘Free convection in ZnO-Water nanofluid-filled and tilted hemispherical enclosures containing a cubic electronic device’, Int. Commun. Heat Mass Transf., vol. 87, pp. 204–211, Oct. 2017, doi: 10.1016/j.icheatmasstransfer.2017.06.011.
4. Actes de congrès internationaux avec comité de lecture (2018-2023)
[1] M.-B. Cherikh, Jean-Gabriel Bauzin, Ali Hocine, and Najib Laraqi, ‘Tutorial 15: Experimental identification of mobile heat sources’, presented at the Metti 8 Advanced School, Ile d’Oléron, France, Sep. 2023.
[2] J.-G. Bauzin, M.-B. Cherikh, M. Nguyen, and N. Laraqi, ‘Tutorial 10: Thermomechanical inversion’, presented at the Metti 8 Advanced School, Ile d’Oléron, France, Sep. 2023.
[3] M.-V. Eric and N. Laraqi, ‘Pareto based Multi-Objective Evolutionary Optimization of Multi-node Network for Thermal Modelling of Electronic Package’, in 2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), May 2023, pp. 1–9. doi: 10.1109/ITherm55368.2023.10177518.
[4] Jean-Gabriel Bauzin, Mehdi Cherikh, Ali Hocine, and Najib Laraqi, ‘Transient thermal behaviour of a substrate subjected to the activation of an electronic chip and surface cooling’, presented at the The 8th International Congress “Engineering, Environment and Materials in Process Industry”, Jahorina, Bosnie Herzegovine, Mar. 2023. [Online]. Available: https://eem.tfzv.ues.rs.ba/
[5] M. B. Cherikh, Q. Dupuis, J.-G. Bauzin, A. Hocine, and N. Laraqi, ‘Numerical study of moving heat source detection on a plate by inverse method from simulated temperature data on the rear face.’, presented at the International Heat Transfer Conference 17, Begel House Inc., 2023. doi: 10.1615/IHTC17.230-20.
[6] J.-G. Bauzin, N. Laraqi, and A. Gapin, ‘Estimation of the thermal parameters of an aircraft braking system from experimental data’, presented at the International Heat Transfer Conference 17, Begel House Inc., 2023. doi: 10.1615/IHTC17.230-10.
[7] Mehdi Cherikh, Jean-Gabriel Bauzin, Amal Tmiri, and Najib Laraqi, ‘Problématique du couplage thermoélastique : Identification des conditions aux limites thermiques et des propriétés thermomécaniques d’un solide à partir de mesures de déformation’, presented at the Journées Internationales de Thermique, Tangers, Nov. 2022.
[8] Jean-Gabriel Bauzin, Nicolas Keruzore, Najib Laraqi, Arnaud Gapin, and Jean-Frédéric Diebold, ‘Identification expérimentale des paramètres thermiques d’un freinage d’avion’, presented at the Journées Internationales de Thermique, Tangers, Nov. 2022.
[9] V. Bissuel, Q. Dupuis, N. Laraqi, and J.-G. Bauzin, ‘Using statistical inverse methods for detecting defects in electronic components’, J. Phys. Conf. Ser., vol. 2116, no. 1, p. 012078, Nov. 2021, doi: 10.1088/1742-6596/2116/1/012078.
[10] Q. Dupuis, V. Bissuel, N. Laraqi, J.-G. Bauzin, and O. Daniel, ‘A Bayesian Deconvolution Application to Calibrate Multi-port RC Network Representation of Electronic Packages’, in 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), Jun. 2021, pp. 139–144. doi: 10.1109/ITherm51669.2021.9503278.
[11] V. Bissuel, E. Monier-Vinard, Q. Dupuis, O. Daniel, N. Laraqi, and J.-G. Bauzin, ‘Application of Stochastic Deconvolution Methods to improve the Identification of Complex BCI Multi-port Thermal RC Networks’, in 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Jul. 2020, pp. 236–243. doi: 10.1109/ITherm45881.2020.9190341.
[12] J.-G. Bauzin, M.-B. Cherikh, M. Nguyen, and N. Laraqi, ‘Tutorial 10: Thermomechanical inversion’, presented at the Metti 7 Advanced School, Porquerolles, France, Sep. 2019.
[13] J.-G. Bauzin and N. Laraqi, ‘Inverse method based on analytical transfer functions to study a thermomechanical problem’, in Sixth international conference on Thermophysical and Mechanical Properties of Advanced Materials, THERMAM 2019, Izmir, Sep. 2019.
[14] V. Bissuel, B. Rogie, N Laraqi et al., ‘Practical Thermal Modeling of Planar Magnetic Component devices’, in 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), May 2019, pp. 745–754. doi: 10.1109/ITHERM.2019.8757289.
[15] E. Monier-Vinard, B. Rogie, N Laraqi et al., ‘Experimental Characterization of MOR-based and Delphi-like BCI DCTMs’, 2018 24rd Int. Workshop Therm. Investig. ICs Syst. THERMINIC, pp. 1–6, Sep. 2018, doi: 10.1109/THERMINIC.2018.8593294.
[16] V. Bissuel, B. Rogie, N Laraqi et al., ‘Novel Approach to the Extraction of Delphi-like Boundary-Condition-Independent Compact Thermal Models of Planar Transformer Devices’, in 2018 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Sep. 2018, pp. 1–7. doi: 10.1109/THERMINIC.2018.8593283.
[17] A. Baïri et al., ‘Water-ZnO nanofluid saturated porous medium for free convective cooling of a cubical electronics contained in a hemispherical cavity: 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2018’, in ECOS 2018 – Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, University of Minho. 2018.
[18] N. Alilat, O. Haddad, A. Bairi, L. Roseiro, A. V. Hernández, and N. Laraqi, ‘Numerical study of natural convection of ZnO-water enclosed between two inclined concentric hemispheres’, in ECOS 2018 – Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.